Chemical and Pharmacological Aspects of Capsaicin (2024)

1. Bernal M.A., Calderon A.A., Pedreno M.A., Muñoz R., Ros Barceló A., Merino de Caceres F. Capsaicin oxidation by peroxidase from Capsicum annuum (variety Annuum) fruits. J. Agric. Food Chem. 1993;41:1041–1044. doi:10.1021/jf00031a004. [CrossRef] [Google Scholar]

2. Walpole C.S., Bevan S., Bloomfield G., Breckenridge R., James I.F., Ritchie T., Szallasi A., Winter J., Wrigglesworth R. Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues. J. Med. Chem. 1996;39:2939–2952. [PubMed] [Google Scholar]

3. Kobata K., Kawamura M., Toyoshima M., Tamura Y., Ogawa S., Watanabe T. Lipase-catalyzed synthesis of capsaicin analogs by amidation of vanillylamine with fatty acid derivatives. Biotechnol. Lett. 1998;20:451–454. [Google Scholar]

4. Nelson E.K., Dawson L.E. The constitution of capsaicin, the pungent principle of Capsicum. III. J. Am. Chem. Soc. 1923;45:2179–2181. [Google Scholar]

5. [accessed on 28 January 2011]. Available online: http://www.3dchem.com/molecules.asp?ID=105.

6. Katritzky A.R., Xu Y.J., Vakulenko A.V., Wilcox A.L., Bley K.R. Model compounds of caged capsaicin: design, synthesis, and photoreactivity. J. Org. Chem. 2003;68:9100–9104. [PubMed] [Google Scholar]

7. Barbero G.F., Molinillo J.M.G., Varela R.M., Palma M., Macias F.A., Barroso C.G. Application of Hansch´s model to capsaicinoids and capsinoids: a study using the quantitative structure-activity relationship. A novel method for the synthesis of capsinoids. J. Agric. Food Chem. 2010;58:3342–3349. [PubMed] [Google Scholar]

8. Sung Y., Chang Y.Y., Ting N.L. Capsaicin biosynthesis in water-stressed hot pepper fruits. Bot. Bull. Acad. Sin. 2005;46:35–42. [Google Scholar]

9. Kaga H., Miura M., Orito K. A facile procedure for synthesis of capsaicin. J. Org. Chem. 1989;54:3477–3478. [Google Scholar]

10. Castillo E., Lopez-Gonzalez I., De Regil-Hernandez R., Reyes-Duarte D., Sánchez-Herrera D., López-Munguía A., Darszon A. Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels. Biochem. Biophys. Res. Comm. 2007;356:424–430. doi:10.1016/j.bbrc.2007.02.144. [PubMed] [CrossRef] [Google Scholar]

11. Castillo E., Torres-Gavilán A., Severiano P., Arturo N., López-Munguía A. Lipase-catalyzed synthesis of pungent capsaicin analogues. Food Chem. 2007;100:1202–1208. doi:10.1016/j.foodchem.2005.11.026. [CrossRef] [Google Scholar]

12. Ochoa-Alejo N., Ramírez-Malagón R. In vitro chili pepper biotechnology. In Vitro Cell. Dev. Biol. Plant. 2001;37:701–729. doi:10.1007/s11627-001-0121-z. [CrossRef] [Google Scholar]

13. Materska M., Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.) J. Agric. Food Chem. 2005;53:1750–1756. doi:10.1021/jf035331k. [PubMed] [CrossRef] [Google Scholar]

14. Macho A., Lucena C., Sancho R., Daddario N., Minassi A., Munoz E., Appendino G. Non-pungent capsaicinoids from sweet pepper synthesis and evaluation of the chemopreventive and anticancer potential. Eur. J. Nutr. 2003;42:2–9. doi:10.1007/s00394-003-0394-6. [PubMed] [CrossRef] [Google Scholar]

15. Ohnuki K., Niwa S., Maeda S., Inoue N., Yazawa S., Fushiki T. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Biosci. Biotechnol. Biochem. 2001;65:2033–2036. doi:10.1271/bbb.65.2033. [PubMed] [CrossRef] [Google Scholar]

16. Sancho R., Lucena C., Macho A., Calzado M.A., Blanco-Molina M., Minassi A., Appendino G., Muñoz E. Immunosuppressive activity of capsaicinoids: capsiate derived from sweet peppers inhibits NF-κB activation and is a potent antiinflammatory compound in vivo. Eur. J. Immunol. 2002;32:1753–1763. doi:10.1002/1521-4141(200206)32:6<1753::AID-IMMU1753>3.0.CO;2-2. [PubMed] [CrossRef] [Google Scholar]

17. González Molinillo J.M., Macias Domínguez F.A., Varela Montoya R.M., Palma Lovillo M., García Barroso C., Fernández Barbero G. Method for the chemical synthesis of capsinoids. 2010/0256413 A1 US Patent.

18. Lida T., Moriyama T., Kobata K., Morita A., Murayama N., Hashizume S., Fushiki T., Yazawa S., Watanabe T., Tominaga M. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology. 2003;44:958–967. doi:10.1016/S0028-3908(03)00100-X. [PubMed] [CrossRef] [Google Scholar]

19. Harvell K.P., Bosland P.W. The environment produces a significant effect on pungency of chiles. Hort. Sci. 1997;32:1292. [Google Scholar]

20. Blum E., Mazourek M., O'Connell M., Curry J., Thorup T., Liu K., Jahn M., Paran I. Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor. Appl. Genet. 2003;108:79–86. doi:10.1007/s00122-003-1405-y. [PubMed] [CrossRef] [Google Scholar]

21. Curry J., Aluru M., Mendoza M., Nevarez J., Melendrez M., O'Connell M.A. Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci. 1999;148:47–57. doi:10.1016/S0168-9452(99)00118-1. [CrossRef] [Google Scholar]

22. Aluru M.R., Mazourek M., Landry L.G., Curry J., Jahn M., O´Conell M.A. Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J. Exp. Bot. 2003;54:1655–1664. doi:10.1093/jxb/erg176. [PubMed] [CrossRef] [Google Scholar]

23. Andrews J. Peppers: The Domesticated Capsic*ms. University of Texas Press; Austin, TX, USA: 1995. p. 274. [Google Scholar]

24. Stewart C., Kang B.C., Liu K., Mazourek M., Moore S.L., Yoo E.Y., Kim B.D., Paran I., Jahn M.M. The pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J. 2005;42:675–688. [PubMed] [Google Scholar]

25. Prasad B.C., Kumar V., Gururaj H.B., Parimalan R., Giridhar P., Ravishankar G.A. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.) Proc. Natl. Acad. Sci. USA. 2006;103:13315–13320. [PMC free article] [PubMed] [Google Scholar] Retracted

26. Stewart C., Mazourek M., Stellari G.M., O'Connell M., Jahn M. Genetic control of pungency in C. chinense via the Pun1 locus. J. Exp. Bot. 2007;58:979–991. doi:10.1093/jxb/erl243. [PubMed] [CrossRef] [Google Scholar]

27. Ochoa-Alejo N., Gomez-Peralta J.E. Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.) J. Plant Physiol. 1993;141:147–152. [Google Scholar]

28. Contreras-Padilla M., Yahia E.M. Changes in capsaicinoids during development, maturation, and senescence of chile peppers and relation with peroxidase activity. J. Agric. Food Chem. 1998;46:2075–2079. [Google Scholar]

29. Bernal M.A., Ros Barceló A. 5,5´- dicapsaicin, 4´-O-5-dicapsaicin ether, and dehydrogenation polymers with high molecular weights are the main products of the oxidation of capsaicin by peroxidase from hot pepper. J. Agric. Food Chem. 1996;43:352–355. [Google Scholar]

30. Estrada B., Pomar F., Díaz J., Merino F., Bernal M.A. Pungency levels in fruits of the padron pepper with different water supply. Hort. Sci. 1999;81:385–396. doi:10.1016/S0304-4238(99)00029-1. [CrossRef] [Google Scholar]

31. Prasad N.C., Gururaj H.B., Kumar V., Giridhar P., Parimalan R., Sharma A., Ravishankar G.A. Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in-vivo and in-vitro cell cultures of Capsicum spp. J. Agric. Food Chem. 2006;54:1854–1859. [PubMed] [Google Scholar]

32. Burch R.M., Carter R.B., Lazar J. Injectable capsaicin. 2005/0019436 A1. Patent US. 2005

33. Iwai K., Watanabe T., Tamura Y., Ogawa S. Method of producing capsaicin analogues. 6,022,718 US Patent.

34. Kobata K., Kobayashi M., Tamura Y., Miyoshi S., Ogawa S., Watanabe T. Lipase-catalyzed synthesis of capsaicin analogs by transacylation of capsaicin with natural oils or fatty acid derivatives in n-hexane. Biotechnol. Lett. 1999;21:547–550. doi:10.1023/A:1005567923159. [CrossRef] [Google Scholar]

35. Kobata K., Toyoshima M., Kawamura M., Watanabe T. Lipase-catalyzed synthesis of capsaicin analogs using natural oils as an acyl donor. Biotechnol. Lett. 1998;20:781–783. [Google Scholar]

36. Kaga H., Goto K., Takahashi T., Hino M., Tokuhashi T., Orito K. A general and stereoselective synthesis of the capsaicinoids via the orthoester Claisen rearrangement. Tetrahedron. 1996;52:8451–8470. doi:10.1016/0040-4020(96)00414-0. [CrossRef] [Google Scholar]

37. Choi H.Y., Yoon S.H. Bioisoster of capsaicin: Synthesis of 1-hydroxy-2-pyridone analogue. Bull. Kor. Chem. Soc. 1999;20:857–859. [Google Scholar]

38. Appendino G., Minassi A., Morello A.S., De Petrocellis L., Di Marzo V. N-acylvanillamides: Development of an expeditious synthesis and discovery of new acyl templates for powerful activation of the vanilloid receptor. J. Med. Chem. 2002;45:3739–3745. doi:10.1021/jm020844o. [PubMed] [CrossRef] [Google Scholar]

39. Torregiani E., Seu G., Minassi A., Appendino G. Cerium (III) chloride promoted chemoselective esterification of phenolic alcohols. Tetrahedron Lett. 2005;46:2193–2196. doi:10.1016/j.tetlet.2005.02.042. [CrossRef] [Google Scholar]

40. Sultana I., Shimamoto M., Obata R., Nishiyama S., Sugai T. An expeditious chemo-enzymatic synthesis of dihydronorcapsaicin β-D-glucopyranoside. Sci. Technol. Adv. Mater. 2006;7:197–201. doi:10.1016/j.stam.2005.10.005. [CrossRef] [Google Scholar]

41. Sutoh K., Kobata K., Yazawa S., Watanabe T. Capsinoid is biosynthesized from phenylalanine and valine in a non-pungent pepper, Capsicum annuum L. cv. CH-19 sweet. Biosci. Biotechnol. Biochem. 2006;70:1513–1516. [PubMed] [Google Scholar]

42. Amino Y., Kurosawa W., Nakano T., Hirasawa K. Production method of capsinoid by dehydratation condensation, stabilizing method of capsinoid, and capsinoid composition. 7700331 US Patent.

43. Johnson T.S., Ravishankar G.A., Venkataraman L.V. Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant Cell. Tiss. Organ. Cult. 1996;44:117–121. doi:10.1007/BF00048188. [CrossRef] [Google Scholar]

44. Nuñez-Palenius H., Ochoa-Alejo N. Effect of phenylalanine and phenylpropanoids on the accumulation of capsaicinoids and lignin in cell cultures of chili pepper (Capsicum annuum L.) In Vitro Cell. Dev. Biol. Plant. 2005;41:801–805. doi:10.1079/IVP2005708. [CrossRef] [Google Scholar]

45. Pandhair V., Gosal S.S. Capsaicin production in cell suspension cultures derived from placenta of Capsicum annuum L. fruit. Indian J. Agric. Biochem. 2009;22:78–82. [Google Scholar]

46. Gutiérrez-Carbajal M., Monforte-González M., Miranda-Ham M., Godoy-Hernández G., Vázquez-Flota F. Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biol. Plant. 2010;54:430–434. doi:10.1007/s10535-010-0078-z. [CrossRef] [Google Scholar]

47. Veeresham C., Kokate C.K., Apte S.S., Venkateshwarly V. Effect of precursors on capsaicin Capsicum annuum. Plant Tiss. Cult. 1993;3:67–70. [Google Scholar]

48. Johnson T., Sarada R., Ravishankart G. Capsaicin formation in p-fluorophenylalanine resistant and normal cell cultures of Capsicum frutescens and activity of phenylalanine ammonia lyase. J. Biosci. 1998;23:209–212. doi:10.1007/BF02720022. [CrossRef] [Google Scholar]

49. Sudha G., Ravishankar G.A. Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. J. Plant Physiol. 2003;160:339–346. [PubMed] [Google Scholar]

50. Lindsey K. Incorporation of [14C]phenylalanine and [14C]cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. Phytochemistry. 1986;25:2793–2801. doi:10.1016/S0031-9422(00)83744-9. [CrossRef] [Google Scholar]

51. Johnson T.S., Ravishankar G.A., Venkataraman L.V. In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci. 1990;70:223–229. doi:10.1016/0168-9452(90)90137-D. [CrossRef] [Google Scholar]

52. Spanyar P., Blazovich M. A thin-layer chromatographic method for the determination of capsaicin in ground paprika. Analyst. 1969;94:1084–1089. doi:10.1039/an9699401084. [PubMed] [CrossRef] [Google Scholar]

53. Pankar D.S., Magar N.G. New method for the determination of capsaicin by using multi-band thin-layer chromatography. J. Chromatogr. 1977;144:149–152. doi:10.1016/0021-9673(77)80021-6. [PubMed] [CrossRef] [Google Scholar]

54. Sato K., Sasaki S.S., Goda Y., Yamada T., Nunomura O., Ishikawa K., Maitani T. Direct connection of supercritical fluid extraction and supercritical fluid chromatography as a rapid quantitative method for capsaicinoids in placentas of Capsicum. J. Agric. Food Chem. 1999;47:4665–4668. doi:10.1021/jf990488r. [PubMed] [CrossRef] [Google Scholar]

55. Choi S.H., Suh B.S., Kozukue E., Kozukue N., Levin C.E., Friedman M. Analysis of the contents of pungent compounds in fresh korean red peppers and in pepper-containing foods. J. Agric. Food Chem. 2006;54:9024–9031. [PubMed] [Google Scholar]

56. Barbero G.F., Palma M., Barroso C.G. Pressurized liquid extraction of capsaicinoids from peppers. J. Agric. Food Chem. 2006;54:3231–3236. [PubMed] [Google Scholar]

57. Barbero G.F., Palma M., Barroso C.G. Determination of capsaicinoids in peppers by microwave-assisted extraction-high-performance liquid chromatography with fluorescence detection. Anal. Chim. Acta. 2006;578:227–233. doi:10.1016/j.aca.2006.06.074. [PubMed] [CrossRef] [Google Scholar]

58. Barbero G.F., Liazid A., Palma M., Barroso C.G. Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta. 2008;75:1332–1337. doi:10.1016/j.talanta.2008.01.046. [PubMed] [CrossRef] [Google Scholar]

59. Thapa B., Skalko-Basnet N., Takano A., Masuda K., Basnet P. High-performance liquid chromatography analysis of capsaicin content in 16 Capsicum fruits from Nepal. J. Med. Food. 2009;12:908–913. doi:10.1089/jmf.2008.0187. [PubMed] [CrossRef] [Google Scholar]

60. Mueller-Seitz E., Hiepler C., Petz M. Chili pepper fruits: content and pattern of capsaicinoids in single fruits of different ages. J. Agric. Food Chem. 2008;56:12114–12121. doi:10.1021/jf802385v. [PubMed] [CrossRef] [Google Scholar]

61. Lu J., Cwik M. Determination of capsaicin and zucapsaicin in human serum by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 1997;701:135–139. doi:10.1016/S0378-4347(97)00347-2. [PubMed] [CrossRef] [Google Scholar]

62. Saria A., Lembeck F., Skofitsch G. Determination of capsaicin in tissues and separation of capsaicin analogues by high-performance liquid chromatography. J. Chromatogr. 1981;208:41–46. [PubMed] [Google Scholar]

63. Tucker S.P. Determination of capsaicin and dihydrocapsaicin in air in a pickle and pepper processing plant. AIHAJ. 2001;62:45–48. [PubMed] [Google Scholar]

64. Kopec S.E., DeBellis R.J., Irwin R.S. Chemical analysis of freshly prepared and stored capsaicin solutions: implications for tussigenic challenges. Pulm. Pharmacol. Ther. 2002;15:529–534. doi:10.1006/pupt.2002.0394. [PubMed] [CrossRef] [Google Scholar]

65. Weaver K.M., Awde D.B. Rapid high-performance liquid chromatographic method for the determination of very low capsaicin levels. J. Chromatogr. 1986;367:438–442. [PubMed] [Google Scholar]

66. Henderson D.E., Slickman A.M., Henderson S.K. Quantitative HPLC determination of the antioxidant activity of capsaicin on the formation of lipid hydroperoxides of linoleic acid: a comparative study against BHT and melatonin. J. Agric. Food Chem. 1999;47:2563–2570. doi:10.1021/jf980949t. [PubMed] [CrossRef] [Google Scholar]

67. Kozukue N., Han J.S., Kozukue E., Lee S.J., Kim J.A., Lee K.R., Levin C.E., Friedman M. Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography−mass spectrometry. J. Agric. Food Chem. 2005;53:9172–9181. doi:10.1021/jf050469j. [PubMed] [CrossRef] [Google Scholar]

68. Friedman M., Levin C.E., Lee S.U., Lee J.S., Ohnisi-Kameyama M., Kozukue N. Analysis by HPLC and LC/MS of pungent piperamides in commercial black, white, green, and red whole and ground peppercorns. J. Agric. Food Chem. 2008;56:3028–3036. doi:10.1021/jf703711z. [PubMed] [CrossRef] [Google Scholar]

69. Kobata K., Saito K., Tate H., Nashimoto A., Okuda H., Takemura I., Miyakawa K., Takahashi M., Iwai K., Watanabe T. Long-chain N-vanillyl-acylamides from Capsicum oleoresin. J. Agric. Food Chem. 2010;58:3627–3631. [PubMed] [Google Scholar]

70. Srinivas N.R. LC/MS/MS analysis of capsaicin using multiple transition pairs-some view points to ponder. Biomed. Chromatogr. 2009;23:1129–1130. [PubMed] [Google Scholar]

71. Reilly C.A., Crouch D.J., Yost G.S., Fatah A.A. Determination of capsaicin, dihydrocapsaicin, and nonivamide in self-defense weapons by liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2001;912:259–267. doi:10.1016/S0021-9673(01)00574-X. [PubMed] [CrossRef] [Google Scholar]

72. Reilly C.A., Crouch D.J., Yost G.S., Fatah A.A. Determination of capsaicin, nonivamide, and dihydrocapsaicin in blood and tissue by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2002;26:313–319. [PubMed] [Google Scholar]

73. Garcés-Claver A., Arnedo-Andrés M.S., Abadía J., Gil-Ortega R., Alvarez-Fernandez A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruits by liquid chromatography-electrospray/time-of-flight mass spectrometry. J. Agric. Food Chem. 2006;54:9303–9311. [PubMed] [Google Scholar]

74. Garcés-Claver A., Gil-Ortega R., Alvarez-Fernandez A., Arnedo-Andrés M.S. Inheritance of capsaicin and dihydrocapsaicin, determined by HPLC-ESI/MS, in an intraspecific cross of Capsicum annuum L. J. Agric. Food Chem. 2007;55:6951–6957. [PubMed] [Google Scholar]

75. Beaudry F., Vachon P. Quantitative determination of capsaicin, a transient receptor potential channel vanilloid 1 agonist, by liquid chromatography quadrupole ion trap mass spectrometry: evaluation of in vitro metabolic stability. Biomed. Chromatogr. 2009;23:204–211. doi:10.1002/bmc.1107. [PubMed] [CrossRef] [Google Scholar]

76. Zhang Q., Hu J., Sheng L., Li Y. Simultaneous quantification of capsaicin and dihydrocapsaicin in rat plasma using HPLC coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010;878:2292–2297. doi:10.1016/j.jchromb.2010.06.040. [PubMed] [CrossRef] [Google Scholar]

77. Muller-Stock F.A., Joshi R.K., Buchi J. Study of the components of capsaicin. Quantitative gas chromatographic determination of individual hom*ologs and analogs of capsaicin in mixtures from a natural source and of vanillyl pelargonic amide as adulteration. J. Chromatogr. 1971;63:281–287. [PubMed] [Google Scholar]

78. Ha J., Han K.J., Kim K.J., Jeong S.W. Gas chromatographic analysis of capsaicin in Gochujang. J. Assoc. Anal. Chem. Int. 2008;91:387–391. [PubMed] [Google Scholar]

79. Todd P.H.J., Jr., Bensinger G., Biftu T. Determination of pungency due to Capsicum by gas-liquid chromatography. J. Food Sci. 1977;42:660–665. [Google Scholar]

80. DiCecco J.J. Gas-liquid chromatographic determination of capsaicin. J. Assoc. Anal. Chem. 1976;59:1–4. [PubMed] [Google Scholar]

81. Thiele R., Mueller-Seitz E., Petz M. Chili pepper fruits: presumed precursors of fatty acids characteristic for capsaicinoids. J. Agric. Food Chem. 2008;56:4219–4224. doi:10.1021/jf073420h. [PubMed] [CrossRef] [Google Scholar]

82. Peña-Alvarez A., Ramirez-Maya E., Alvarado-Suarez L.A. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A. 2009;1216:2843–2847. doi:10.1016/j.chroma.2008.10.053. [PubMed] [CrossRef] [Google Scholar]

83. Laskaridou-Monnerville A. Determination of capsaicin and dihydrocapsaicin by micellar electrokinetic capillary chromatography and its application to various species of Capsicum, Solanaceae. J. Chromatogr. A. 1999;838:293–302. [PubMed] [Google Scholar]

84. Aranda F.J., Villalain J., Gomez-Fernandez J.C. Capsaicin affects the structure and phase organization of phospholipid membranes. Biochim. Biophys. Acta. 1995;1234:225–234. doi:10.1016/0005-2736(94)00293-X. [PubMed] [CrossRef] [Google Scholar]

85. Peng A., Ye H., Li X., Chen L. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography. J. Sep. Sci. 2009;32:2967–2973. doi:10.1002/jssc.200900151. [PubMed] [CrossRef] [Google Scholar]

86. Nazari F., Ebrahimi S.N., Talebi M., Rassouli A., Bijanzadeh H.R. Multivariate optimisation of microwave-assisted extraction of capsaicin from Capsicum frutescens L. and quantitative analysis by 1H-NMR. Phytochem. Anal. 2007;18:333–340. doi:10.1002/pca.987. [PubMed] [CrossRef] [Google Scholar]

87. Higashiguchi F., Nakamura H., Hayashi H., Kometani T. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits. J. Agric. Food Chem. 2006;54:5948–5953. doi:10.1021/jf0607720. [PubMed] [CrossRef] [Google Scholar]

88. Davis C.B., Markey C.E., Busch M.A., Busch K.W. Determination of capsaicinoids in habanero peppers by chemometric analysis of UV spectral data. J. Agric. Food Chem. 2007;55:5925–5933. [PubMed] [Google Scholar]

89. Kachoosangi R.T., Wildgoose G.G., Compton R.G. Carbon nanotube-based electrochemical sensors for quantifying the 'heat' of chilli peppers: the adsorptive stripping voltammetric determination of capsaicin. Analyst. 2008;133:888–895. [PubMed] [Google Scholar]

90. Alberti A., Galasso V., Kovac B., Modelli A., Pichierri F. Probing the molecular and electronic structure of capsaicin: a spectroscopic and quantum mechanical study. J. Phys. Chem. A. 2008;112:5700–5711. doi:10.1021/jp801890g. [PubMed] [CrossRef] [Google Scholar]

91. Pershing L.K., Reilly C.A., Corlett J.L., Crouch D.J. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo. Toxicol. Appl. Pharmacol. 2004;200:73–81. doi:10.1016/j.taap.2004.03.019. [PubMed] [CrossRef] [Google Scholar]

92. Suresh D., Srinivasan K. Tissue distribution and elimination of capsaicin, piperine and curcumin following oral intake in rats. Indian J. Med. Res. 2010;131:682–691. [PubMed] [Google Scholar]

93. Chanda S., Bashir M., Babbar S., Koganti A., Bley K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab. Dispos. 2008;36:670–675. [PubMed] [Google Scholar]

94. Kawada T., Iwai K. In vivo and in vitro metabolism of dihydrocapsaicin, a pungent principle of hot pepper, in rats. Agric. Biol. Chem. 1985;49:441–448. doi:10.1271/bbb1961.49.441. [CrossRef] [Google Scholar]

95. Cortright D.N., Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. Eur. J. Biochem. 2004;271:1814–1819. doi:10.1111/j.1432-1033.2004.04082.x. [PubMed] [CrossRef] [Google Scholar]

96. Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi:10.1038/39807. [PubMed] [CrossRef] [Google Scholar]

97. Tominaga M., Tominaga T. Structure and function of TRPV1. Pflugers Arch. 2005;451:143–150. doi:10.1007/s00424-005-1457-8. [PubMed] [CrossRef] [Google Scholar]

98. Liu M., Liu M.C., Magoulas C., Priestley J.V., Willmott N.J. Versatile regulation of cytosolic Ca2+ by vanilloid receptor I in rat dorsal root ganglion neurons. J. Biol. Chem. 2003;278:5462–5472. [PubMed] [Google Scholar]

99. Kárai L.J., Russell J.T., Iadarola M.J., Oláh Z. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J. Biol. Chem. 2004;279:16377–16387. [PubMed] [Google Scholar]

100. Morita A., Iwasaki Y., Kobata K., Lida T., Higashi T., Oda K., Susuki A., Narukawa M., Sasakuma S., Yokogoshi H., Yazawa S., Tominaga M., Watanabe T. Lipophilicity of capsaicinoids and capsinoids influences the multiple activation process of rat TRPV1. Life Sci. 2006;79:2303–2310. [PubMed] [Google Scholar]

101. Pingle S.C., Matta J.A., Ahern G.P. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb. Exp. Pharmacol. 2007;179:155–171. doi:10.1007/978-3-540-34891-7_9. [PubMed] [CrossRef] [Google Scholar]

102. Bevan S., Szolcsanyi J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol. Sci. 1990;11:330–333. [PubMed] [Google Scholar]

103. Saria A., Lundberg J.M., Hua X., Lembeck F. Capsaicin-induced substance P release and sensory control of vascular permeability in the guinea-pig ureter. Neurosci. Lett. 1983;41:167–172. doi:10.1016/0304-3940(83)90241-0. [PubMed] [CrossRef] [Google Scholar]

104. Jhamandas K., Yaksh T.L., Harty G., Szolcsanyi J., Go V.L. Action of intrathecal capsaicin and its structural analogues on the content and release of spinal substance P: selectivity of action and relationship to analgesia. Brain Res. 1984;306:215–225. doi:10.1016/0006-8993(84)90371-8. [PubMed] [CrossRef] [Google Scholar]

105. Purkiss J., Welch M., Doward S., Foster K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem. Pharmacol. 2000;59:1403–1406. doi:10.1016/S0006-2952(00)00260-4. [PubMed] [CrossRef] [Google Scholar]

106. Szolcsanyi J., Oroszi G., Nemeth J., Szilvassy Z., Tosaki A. Endothelin release by capsaicin in isolated working rat heart. Eur. J. Pharmacol. 1999;376:247–250. doi:10.1016/S0014-2999(99)00374-X. [PubMed] [CrossRef] [Google Scholar]

107. Dutta A., Deshpande S.B. Mechanisms underlying the hypertensive response induced by capsaicin. Int. J. Cardiol. 2010;145:358–359. doi:10.1016/j.ijcard.2010.02.034. [PubMed] [CrossRef] [Google Scholar]

108. Holzer P., Lippe I.T. Stimulation of afferent nerve endings by intragastric capsaicin protects against ethanol-induced damage of gastric mucosa. Neuroscience. 1988;27:981–987. doi:10.1016/0306-4522(88)90201-1. [PubMed] [CrossRef] [Google Scholar]

109. Szolcsanyi J. Effect of capsaicin, resiniferatoxin and piperine on ethanol-induced gastric ulcer of the rat. Acta Physiol. Hung. 1990;75(Suppl.):267–268. [PubMed] [Google Scholar]

110. Mozsik G., Szolcsanyi J., Racz I. Gastroprotection induced by capsaicin in healthy human subjects. World J. Gastroenterol. 2005;11:5180–5184. [PMC free article] [PubMed] [Google Scholar]

111. Kawada T., Hagihara K., Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 1986;116:1272–1278. [PubMed] [Google Scholar]

112. Watanabe T., Kawada T., Yamamoto M., Iwai K. Capsaicin, a pungent principle of hot red pepper, evokes catecholamine secretion from the adrenal medulla of anesthetized rats. Biochem. Biophys. Res. Commun. 1987;142:259–264. doi:10.1016/0006-291X(87)90479-7. [PubMed] [CrossRef] [Google Scholar]

113. Backonja M.M., Malan T.P., Vanhove G.F., Tobias J.K. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomized, double-blind, controlled study with an open-label extension. Pain Med. 2010;11:600–608. [PubMed] [Google Scholar]

114. Tesfaye S. Advances in the management of diabetic peripheral neuropathy. Curr. Opin. Support. Palliat. Care. 2009;3:136–143. doi:10.1097/SPC.0b013e32832b7df5. [PubMed] [CrossRef] [Google Scholar]

115. Sawynok J. Topical analgesics in neuropathic pain. Curr. Pharm. Des. 2005;11:2995–3004. doi:10.2174/1381612054865019. [PubMed] [CrossRef] [Google Scholar]

116. Derry S., Lloyd R., Moore R.A., McQuay H.J. Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2009 CD007393. [PMC free article] [PubMed] [Google Scholar]

Chemical and Pharmacological Aspects of Capsaicin (2024)

FAQs

What are the pharmacological properties of capsaicin? ›

1). capsaicin exerts analgesic, antioxidant, cardioprotective, anticancer and thermogenic effects, and it can promote weight loss (3). Some of these effects are medi‑ ated by the receptor called 'transient receptor potential cation channel subfamily V member 1' (TrPV1), to which capsaicin binds specifically.

What is the chemical compound of capsaicin? ›

Capsaicin | C18H27NO3 | CID 1548943 - PubChem.

What chemicals are in Capsicum? ›

The fruit of the capsicum plant contains a chemical called capsaicin. Capsaicin is what seems to help reduce pain and swelling. A particular form of capsicum causes intense eye pain and other unpleasant effects when it comes in contact with the face. This form is used in self-defense pepper sprays.

What is the chemical test for capsaicin? ›

Extraction of capsaicinoids was done using ethanol as solvent, while high performance liquid chromatography (HPLC) was used for separation, identification and quantitation of the components.

What is the chemical in pure capsaicin? ›

Pure capsaicin is a hydrophobic, colorless, highly pungent (i.e., spicy) crystalline solid. Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Does capsaicin have medicinal properties? ›

Capsaicin is known for its potent pain-relieving and anti-inflammatory properties. It's been used both topically and orally to treat pain associated with conditions like osteoarthritis and chronic muscle pain, among others.

What are the chemical properties of Capsicum? ›

Capsaicinoids, a group of chemical principles present in matured capsicum pods, are responsible for the pungency as well as pharmacological/medicinal properties of capsicum. Some important capsaicinoids include capsaicin, followed by dihydrocapsaicin, nordihydrocapsaicin, hom*odihydrocapsaicin, and hom*ocapsaicin.

What chemical stops capsaicin? ›

Casein molecules attract capsaicin molecules. They surround the capsaicin molecules and wash them away, in the same way that soap washes away grease. This explains why milk and ice cream can remove capsaicin molecules from your tongue. Casein forms the curds in sour milk.

What type of drug is capsaicin? ›

Capsaicin is a topical analgesic agent used for the symptomatic relief of neuropathic pain associated with post-herpetic neuralgia, as well as other muscle and joint pain.

Is capsaicin physically harmful? ›

Our body senses capsaicin, the major active compound in chillies, and immediately responds to it. But there's no serious physical damage occurring to the cells.

What is the mechanism of action of capsaicin? ›

Mechanism of Action

Capsaicin, a member of the vanilloid family, is a group of compounds that possess a vanillyl group. It binds as an agonist to vanilloid receptor subtype 1 (TRPV1 - transient receptor potential V1), which is an ion channel type trans-membrane receptor.

How to neutralize capsaicin? ›

Balancing it with an acid can help neutralize the molecule's activity. This means drinking or eating something acidic — such as lemonade, limeade, orange juice or a tomato-based food item or drink — may also help cool your mouth down. (Milk is also acidic, by the way.) DO down some carbs.

What kind of chemical is capsaicin? ›

Chemical Class and Type:

Capsaicin is a phenylpropanoid compound. Capsaicin is obtained from peppers which are the fruit from plants in the genus Capsicum. The peppers are ground into a fine powder.

What hormone does capsaicin release? ›

This compound centers around the tongue, causing an intense burning sensation. Throughout all the pain associated with spicy foods, the consumption of these foods releases endorphins and dopamine.

What foods are high in capsaicin? ›

In a nutshell: capsaicin is a lipophilic compound that can be found in different concentrations in peppers that are described as hot, such as Habanero, Jalapeño, and Scorpion. It is a compound that produces a burning sensation in any tissue it comes into contact with.

What is the property of capsaicin? ›

Capsaicin is also known for its antimicrobial and anticancer properties. Capsaicin is the main ingredient in ointments, lotions, and patches that are used for pain relief. It interacts with a nerve receptor called TRPV1, which is found in the brain, peripheral nerves, bladder, blood vessels, and other areas.

What are the biological properties of capsaicin? ›

It has various properties like antiinflammatory, antioxidant, antiobesity, anticarcinogenic, and analgesics. Capsaicin induces the apoptosis/autophagy and inhibits the cell growth in BC cells by the modulation of ERK and p38.

What is the pharmaco*kinetics of capsaicin? ›

While oral pharmaco*kinetics information in humans is limited, ingestion of equipotent dose of 26.6 mg of pure capsaicin, capsaicin was detected in the plasma after 10 minutes and the peak plasma concentration of 2.47 ± 0.13 ng/ml was reached at 47.1 ± 2.0 minutes 4.

Is capsaicin inflammatory or anti-inflammatory? ›

Although capsaicin can cause neurogenic inflammation per se under certain physiologic conditions, it also has analgesic and anti-inflammatory activities and is used currently in topical creams and gels (e.g., Axsain and Zostrix) to mitigate neurogenic pain.

Top Articles
Latest Posts
Article information

Author: Prof. Nancy Dach

Last Updated:

Views: 5481

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Prof. Nancy Dach

Birthday: 1993-08-23

Address: 569 Waelchi Ports, South Blainebury, LA 11589

Phone: +9958996486049

Job: Sales Manager

Hobby: Web surfing, Scuba diving, Mountaineering, Writing, Sailing, Dance, Blacksmithing

Introduction: My name is Prof. Nancy Dach, I am a lively, joyous, courageous, lovely, tender, charming, open person who loves writing and wants to share my knowledge and understanding with you.